Karl Pearson’s Coefficient Method
Karl Pearson’s method of Coefficient of correlation is also known as Pearsonian coefficient or correlation or product correlation method.
Let X and Y be two random variables, then the correlation of coefficient between the variables X and Y is denoted by r(X, Y) or simply by rXY, and is defined as:\[{{r}_{XY}}=r\left( X,Y \right)=\frac{Cov\left( X,Y \right)}{{{\sigma }_{X}}{{\sigma }_{Y}}}\]\[Where,Cov\left( X,Y \right)=E\left[ \left\{ X-E\left( X \right) \right\}\left\{ Y-E\left( Y \right) \right\} \right]\]\[\Rightarrow Cov\left( X,Y \right)=\frac{1}{n}\sum{\left( {{x}_{i}}-\bar{x} \right)}\left( {{y}_{i}}-\bar{y} \right)={{\mu }_{11}}\]\[{{\sigma }_{X}}^{2}=E{{\left\{ X-E\left( X \right) \right\}}^{2}}=\frac{1}{n}{{\sum{\left( {{x}_{i}}-\bar{x} \right)}}^{2}}\]\[{{\sigma }_{Y}}^{2}=E{{\left\{ Y-E\left( Y \right) \right\}}^{2}}=\frac{1}{n}{{\sum{\left( {{y}_{i}}-\bar{y} \right)}}^{2}}\]\[\therefore {{r}_{XY}}=\frac{Cov\left( X,Y \right)}{{{\sigma }_{X}}{{\sigma }_{Y}}}=\frac{\frac{1}{n}\sum{\left( {{x}_{i}}-\bar{x} \right)}\left( {{y}_{i}}-\bar{y} \right)}{{{\left[ \left\{ \frac{1}{n}{{\sum{\left( {{x}_{i}}-\bar{x} \right)}}^{2}} \right\}\left\{ \frac{1}{n}{{\sum{\left( {{y}_{i}}-\bar{y} \right)}}^{2}} \right\} \right]}^{\frac{1}{2}}}}\]Other equivalent forms of Coefficient of correlation formulas are:\[Cov\left( X,Y \right)=\frac{1}{n}\sum{\left( {{x}_{i}}-\bar{x} \right)}\left( {{y}_{i}}-\bar{y} \right)\]\[\Rightarrow Cov\left( X,Y \right)=\frac{1}{n}\sum{{{x}_{i}}{{y}_{i}}-\bar{y}\frac{1}{n}\sum{{{x}_{i}}}}-\bar{x}\frac{1}{n}\sum{{{y}_{i}}}+\bar{x}\bar{y}\]\[\therefore Cov\left( X,Y \right)=\frac{1}{n}\sum{{{x}_{i}}{{y}_{i}}}-\bar{x}.\bar{y}\]\[{{\sigma }_{X}}^{2}=\frac{1}{n}\sum{{{x}_{i}}^{2}}-{{\bar{x}}^{2}}\]\[{{\sigma }_{Y}}^{2}=\frac{1}{n}\sum{{{y}_{i}}^{2}}-{{\bar{y}}^{2}}\]\[\therefore {{r}_{XY}}=\frac{Cov\left( X,Y \right)}{{{\sigma }_{X}}{{\sigma }_{Y}}}=\frac{\frac{1}{n}\sum{{{x}_{i}}{{y}_{i}}}-\bar{x}.\bar{y}}{{{\left[ \left\{ \frac{1}{n}\sum{{{x}_{i}}^{2}}-{{{\bar{x}}}^{2}} \right\}\left\{ \frac{1}{n}\sum{{{y}_{i}}^{2}}-{{{\bar{y}}}^{2}} \right\} \right]}^{\frac{1}{2}}}}\]
Note:
The values of correlation coefficient cannot exceed unity numerically. It always lies in between -1 and +1. That is -1 ≤ r(X, Y) ≤ 1. If r =+1, the correlation is perfect and positive and if r = -1, correlation is perfect and negative.
1. It is not affected by change of origin or change of scale.
2. It is a relative measure. It does not have any unit attached to it.
Example 01 |
Calculate the coefficient of correlation by Karl Pearson’s method based on following values
T1 | 75 | 60 | 45 | 30 | 15 |
T2 | 150 | 175 | 200 | 225 | 250 |
Solution:
T1 | X = T1/15 | X2 | T2 | Y = T2/25 | Y2 | XY |
75 | 5 | 25 | 150 | 6 | 36 | 30 |
60 | 4 | 16 | 175 | 7 | 49 | 28 |
45 | 3 | 9 | 200 | 8 | 64 | 24 |
30 | 2 | 4 | 225 | 9 | 81 | 18 |
15 | 1 | 1 | 250 | 10 | 100 | 10 |
Total | 15 | 55 | 40 | 330 | 110 |
\[\bar{X}=\frac{\sum{X}}{5}=\frac{15}{5}=3\]\[\bar{Y}=\frac{\sum{Y}}{5}=\frac{40}{5}=8\]\[\frac{1}{n}\sum{{{X}^{2}}=\frac{1}{5}\times 55=11}\]\[\frac{1}{n}\sum{{{Y}^{2}}=\frac{1}{5}\times 330=66}\]\[\frac{1}{n}\sum{XY=\frac{1}{5}\times 110=22}\]\[\therefore {{r}_{XY}}=\frac{\frac{1}{n}\sum{XY}-\bar{X}.\bar{Y}}{{{\left[ \left\{ \frac{1}{n}\sum{{{X}^{2}}}-{{{\bar{X}}}^{2}} \right\}\left\{ \frac{1}{n}\sum{{{Y}^{2}}}-{{{\bar{Y}}}^{2}} \right\} \right]}^{\frac{1}{2}}}}\]\[\therefore {{r}_{XY}}=\frac{22-3\times 8}{{{\left[ \left\{ 11-{{3}^{2}} \right\}\left\{ 66-{{8}^{2}} \right\} \right]}^{\frac{1}{2}}}}=\frac{-2}{2}=-1\]
Example 02 |
A computer while calculating correlation coefficient between two variables X and Y from 25 pairs of observation obtained the following results: n = 25, ΣX = 125, ΣX2 = 650, ΣY = 100, ΣY2 = 460, ΣXY = 508. It was later noticed that there was some mistake while copied down two pairs as
X | 6 | 8 |
Y | 14 | 6 |
While the correct values were
X | 8 | 6 |
Y | 12 | 8 |
Obtain the correct value of the correlation coefficient.
Solution:
Corrected ΣX = 125 – 6 – 8 + 8 + 6 = 125
Corrected ΣY = 100 – 14 – 6 + 12 + 8 = 100
Corrected ΣX2 = 650 – 62 – 82 + 82 + 62 = 650
Corrected ΣY2 = 460 – 142 – 62 + 122 + 82 = 436
Corrected ΣXY = 508 – 6(14) – 8(6) + 8(12) + 6(8) = 520\[\bar{X}=\frac{\sum{X}}{25}=\frac{125}{25}=5\]\[\bar{Y}=\frac{\sum{Y}}{25}=\frac{100}{25}=4\]\[\therefore \text{Corrected}~~{{r}_{XY}}=\frac{\frac{1}{n}\sum{XY}-\bar{X}.\bar{Y}}{{{\left[ \left\{ \frac{1}{n}\sum{{{X}^{2}}}-{{{\bar{X}}}^{2}} \right\}\left\{ \frac{1}{n}\sum{{{Y}^{2}}}-{{{\bar{Y}}}^{2}} \right\} \right]}^{\frac{1}{2}}}}\]\[\therefore {{r}_{XY}}=\frac{\frac{1}{25}\times 520-5\times 4}{{{\left[ \left\{ \frac{1}{25}\times 650-{{5}^{2}} \right\}\left\{ \frac{1}{25}\times 436-{{4}^{2}} \right\} \right]}^{\frac{1}{2}}}}\]\[\therefore {{r}_{XY}}=\frac{\frac{4}{5}}{1\times \frac{6}{5}}=\frac{2}{3}=0.67\]
Example 03 |
Calculate the correlation coefficient for the following
Firm | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Sales | 50 | 50 | 55 | 60 | 65 | 65 | 65 | 60 | 60 | 60 |
Expenses | 11 | 13 | 14 | 16 | 16 | 15 | 15 | 14 | 13 | 13 |
Solution:
Here,
\[\bar{X}=\frac{\sum{X}}{N}=\frac{580}{10}=58\]\[\bar{Y}=\frac{\sum{Y}}{N}=\frac{140}{10}=14\]
Firm | Sale X | \[x=X-\bar{X}\] | \[{{x}^{2}}\] | Expenses Y | \[y=Y-\bar{Y}\] | \[{{y}^{2}}\] | \[xy\] |
1 | 50 | -8 | 64 | 11 | -3 | 9 | 24 |
2 | 50 | -8 | 64 | 13 | -1 | 1 | 8 |
3 | 55 | -3 | 9 | 14 | 0 | 0 | 0 |
4 | 60 | 2 | 4 | 16 | 2 | 4 | 4 |
5 | 65 | 7 | 49 | 16 | 2 | 4 | 14 |
6 | 65 | 7 | 49 | 15 | 1 | 1 | 7 |
7 | 65 | 7 | 49 | 15 | 1 | 1 | 7 |
8 | 60 | 2 | 4 | 14 | 0 | 0 | 0 |
9 | 60 | 2 | 4 | 13 | -1 | 1 | -2 |
10 | 60 | -8 | 64 | 13 | -1 | 1 | 8 |
N = 10 | \[\sum{X=580}\] | \[\sum{x=0}\] | \[\sum{{{x}^{2}}=360}\] | \[\sum{Y=140}\] | \[\sum{y=0}\] | \[\sum{{{y}^{2}}=22}\] | \[\sum{xy=70}\] |
\[\therefore r(x,y)=\frac{\sum{xy}}{\sqrt{\sum{{{x}^{2}}.\sum{{{y}^{2}}}}}}=\frac{70}{\sqrt{360\times 22}}=0.787\]
Scatter Diagram Method |
Interquartile and Semi-Interquartile Range |